The Simon Lab at The University of Chicago


The Simon Lab explores the interface of condensed matter physics and quantum optics, employing tools from atomic physics, control theory, and state-of-the-art technology developed in-house. We build materials from light, investigate the role of topology in determining material properties, and tackle challenges at the crossroads between strong correlations and quantum coherence.


 

Making Materials from Light

Matter is typically made of electrons and ions. By developing tools to build materials from photons, we learn about the underpinnings of material properties, and have an opportunity to create matter which previously existed only in the minds of theorists.

Exploring Small Quantum Systems

The laws of quantum mechanics teach us how individual objects behave. When several such objects to interact coherent, the behaviors that emerge are both bizarre and beautiful. We investigate these behaviors with an eye towards material properties, quantum information processing and quantum-secured communication.

 

A Twisted View of Matter

A new generation of materials has revealed that "hidden", non-local order can have far-reaching implications on material properties. These exotic properties often evade detection in the bulk, and manifest as unidirectional edge states, or even more fascinatingly, appear to bind a giant magnet to each quasi-particle, inducing exotic braiding statistics via Aharanov-Bohm phases.

Congratulations 5/20/2018

Alexandros GeorgakopoulosAriel Sommer

Congratulations to Alexandros Georgakopoulos and Ariel Sommer on their paper Theory of Interacting Cavity Rydberg Polaritons posted to the arXiv today!

Fellowship 5/11/2018

Nathan Schine

Congratulations to Nathan Schine on receiving the 2018 Grainger Fellowship.

Fellowship 4/3/2018

Claire Baum

Congratulations to Claire Baum on receiving a 2018 NSF Graduate Research Fellowship.

Paper Published 3/19/2018

Albert RyouAlexandros GeorgakopoulosAriel SommerLogan ClarkNathan SchineJia Ningyuan

Congratulations to Albert Ryou, Alexandros Georgakopoulos, Ariel Sommer, Logan Clark, Nathan Schine and Ningyuan Jia for their paper A Strongly Interacting Polaritonic Quantum Dot published today in Nature Physics.

Atomic Physics

Atomic Physics

Cavity Rydberg Polaritons

Cavity Rydberg Polaritons

Topological Photonics in Curved Space

Topological Photonics in Curved Space

Photonic Materials in Quantum Circuits

Photonic Materials in Quantum Circuits

Hybrid Quantum Systems

Hybrid Quantum Systems

Theory

Theory

Alexandros Georgakopoulos, Ariel Sommer, "Theory of Interacting Cavity Rydberg Polaritons" arXiv: 1805.07315 (2018)

Ningyuan Jia, Nathan Schine, Alexandros Georgakopoulos, Albert Ryou, Ariel Sommer, Jonathan Simon, "A Strongly Interacting Polaritonic Quantum Dot" Nature Physics https://doi.org/10.1038/s41567-018-0071-6 (2018)

Peter Ivanov, Fabian Letscher, Jonathan Simon, Michael Fleischhauer, "Adiabatic flux insertion and growing of Laughlin states of cavity Rydberg polaritons" arXiv: 1803.04156 (2018)

Nathan Schine, Michelle Chalupnik, Tankut Can, Andrey Gromov, Jonathan Simon, "Measuring Electromagnetic and Gravitational Responses of Photonic Landau Levels" arXiv 1802.04418 (2018)

Tomoki Ozawa, Hannah M. Price, Alberto Amo, Nathan Goldman, Mohammad Hafezi, Ling Lu, Mikael Rechtsman, David Schuster, Jonathan Simon, Oded Zilberberg, Iacopo Carusotto, "Topological Photonics" arXiv: 1802.04173 (2018)

Jia Ningyuan, Nathan Schine, Alexandros Georgakopoulos, Albert Ryou, Ariel Sommer, Jonathan Simon, "Photons and polaritons in a broken-time-reversal non-planar resonator" Physical Review A 97, 013802 (2018)

University of Chicago
quantum
Physics Department
James Franck Institute
Institute for Molecular Engineering
MRSEC
College
AFOSR
DARPA
DOE
ARO
UChicago
NSF